
Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Store Documents in on-line Briefcase (Part 1)
By Bipin Joshi

www.binaryintellect.net

Web sites often store files directly in some folder of the file system. However, this may
not be the most suitable way in all scenarios. Many of you might have used Yahoo
Briefcase. It allows you to store any file on the server so that you can access it from
anywhere. If you wish to provide such a facility in your web site then file system based
storage and retrieval is tedious. Enforcing security and managing storage space quota
becomes difficult. More elegant solution can be developed by storing files in database.
This way you have full control on who is storing and retrieving files, storage space and
usage statistics. In this two part article we are going to develop a web based briefcase
application using ASP.NET 2.0 and SQL Server 2005. In this part we kickoff by creating
database tables, stored procedures and classes to manage files and folders.

Functionality
Before we begin the development let’s decide the functionality expected from the
briefcase application.

 The application should allow to manage files and folders via a web based
interface

 The application should allow us to create folders and sub folders

 There should not be any limitation on the nesting levels of the folders

 The application should allow us to delete and rename the folders

 The application should allow us to upload files to a specific folder

 The file can be downloaded at any time by navigating to that folder

 We should be able to delete or rename the file

 The creation date and size of the file must be tracked

 If a folder is deleted then its subfolders and files should also be deleted

 Just like file system the application must ensure that there are no duplicate file or
folder names in a given scope

Software and Technology Features Used
In order to develop the briefcase application we will use the following software:

 ASP.NET 2.0

 TreeView and GridView web server controls

 ADO.NET 2.0

 Visual Studio 2005 (VWD Express Edition can also be used)

 SQL Server 2005 along with Management Studio

http://www.binaryintellect.net/

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Database Design
To begin with let’s define the structure of our database. Open SQL Server 2005
management Studio and create a new database named BriefcaseDb. The Figure 1
shows the New Database dialog of SQL Server 2005 Management Studio.

Figure 1: Creating a new database

The database needs to have two tables viz. Folders and Files. These tables will store
folders and files respectively. The Figure 2 shows these two tables.

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Figure 2: Folders and Files tables

These tables need certain unique keys. The Figure 3 gives the complete T-SQL script to
create these tables:

CREATE TABLE [dbo].[Folders]

(

 [Id] [int] IDENTITY(1,1) NOT NULL,

[FolderName] [varchar](255) COLLATE

SQL_Latin1_General_CP1_CI_AS NULL,

[ParentFolderId] [int] NULL CONSTRAINT

[DF_Folders_ParentFolderId] DEFAULT ((0)),

 [DateCreated] [datetime] NULL,

CONSTRAINT [PK_Folders] PRIMARY KEY CLUSTERED

 (

 [Id] ASC

)

 WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY],

CONSTRAINT [IX_Folders] UNIQUE NONCLUSTERED

 (

 [ParentFolderId] ASC,

 [FolderName] ASC

)

 WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]

)

ON [PRIMARY]

CREATE TABLE [dbo].[Files]

(

 [Id] [int] IDENTITY(1,1) NOT NULL,

[FileName] [varchar](255) COLLATE

SQL_Latin1_General_CP1_CI_AS NULL,

 [FileData] [image] NULL,

 [FileSize] [int] NULL,

 [FolderId] [int] NULL,

 [DateCreated] [datetime] NULL,

CONSTRAINT [PK_Files] PRIMARY KEY CLUSTERED

(

 [Id] ASC

)

WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY],

CONSTRAINT [IX_Files] UNIQUE NONCLUSTERED

(

 [FileName] ASC,

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

 [FolderId] ASC

)

WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]

)

ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

Figure 3: T-SQL Script to create required tables

Notice the above script carefully. In addition to primary key constraints it also has
certain unique key constraints. The first unique constraint is on FolderName and
ParentFolderId columns of Folders table. This constraint ensures that one subfolder
names are unique in one folder. Similarly the other unique constraint is on FileName
and FolderId columns of Files table. This unique constraint ensures that file names are
unique in a given folder.

The columns and their significance of both the tables are summarized in the Figure 4.

Table Name Column Name Column
Specifications

Description

Folders Id Int, Identity Represents a unique identifier of a
folder.

 FolderName Varchar (255) Name of the folder. Maximum length
can be 255 but can be changed as per
your requirement.

 ParentFolderId Int This column contains 0 then it is a root
folder else subfolder of the folder
whose Id is equal to ParentFolderId.

 DateCreated DateTime Date and time at which the folder is
created.

Files Id Int, Identity Represents a unique identifier of a file.

 FileName Varchar (255) Name of the file. Maximum length can
be 255 but can be changed as per
your requirement.

 FileData Image The contents of the file.

 FileSize Int Size of file in bytes.

 FolderId Int Id of the folder in which the file is
stored.

 DateCreated DateTime Date and time at which the file is
created.

Figure 4: Table schema

Creating Stored Procedures
We will now create some stored procedures for getting the data in and out of the
database tables we just created. The Figure 5 lists all the required stored procedures
and purpose of each.

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Stored Procedure Name Description

Files_Create This stored procedure adds a new file to Files table

Files_GetFile This stored procedure returns details about a file from Files
table based on its Id

Files_GetFromFolder This stored procedure returns a list of files belonging to a
particular folder from the Files table

Files_DeleteFromFolder This stored procedure removes all the files from a
specified folder. This is accomplishes by deleting all the
records from Files table for that folder.

Files_Delete This stored procedure removes a file based on its Id by
deleting its records from Files table

Files_Rename This stored procedures renames a file by updating its
record in Files table

Folders_Create This stored procedure creates a new folder by inserting a
record in the Folders table

Folders_GetSubFolders This stored procedure returns all the folders that are
subfolders of a specified folder. This is accomplished by
returning all the records from Folders table for that
matching ParentFolderId

Folders_Delete This stored procedure deletes a specified folder by
deleting its record from Folders table

Folders_DeleteSubFolders This stored procedure deletes all the subfolders of a
specified folder by deleting all the records matching the
ParentFolderId

Folders_Rename This stored procedure renames a folder by updating its
record in Folders table

Figure 5: List of stored procedures

As you can see the stored procedures listed in Figure 5 affect Files and Folders tables
from the BriefcaseDb database. The stored procedures having prefix of Files_ affect
Files table whereas the stored procedures having prefix of Folders_ affect Folders table.
The complete T-SQL script to create the stored procedures as listed in Figure 5 is
included along with the download associated with this article. The following sections
give a overview of the logic involved in creating, renaming, deleting and retrieving files
and folders.

Stored procedures for creating files and folders

Stored procedures that create files and folders simply add a new record in Files and
Folders respectively. The Files and Folders tables contain identity column Id. This way
each newly created file or folder has a unique identifier. This identifier is used later while
renaming or deleting the records.

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Stored procedures for renaming files and folders

Renaming a file or folder involves updating the corresponding record from Files and
Folders tables respectively. The record for a file or folder is updated based on its Id
column. For renaming a file FileName column of Files table is updated with the new file
name whereas for renaming a folder, FolderName column of Folders table is updated
with the new folder name.

Stored procedures for delete files and folders

Deleting files or folders involve deleting records from Files and Folders tables
respectively. The record is deleted on the basis of Id column. When a folder is deleted
all the files belonging to it must also be deleted. This is done by deleting all the records
from Files table where FolderId column value is same as the Id of the folder being
deleted. Further, when a folder is deleted all its subfolders must also be deleted. This is
accomplished by deleting all the records from Folders table where ParentFolderId
column value is same as the Id of the folder being deleted.

Stored procedures for retrieving files and folders

Retrieving files or folders call for executing a SELECT statement against Files or
Folders respectively. A single file or folder can be retrieved based on its Id column
value. All the files belonging to a folder can be retrieved by matching FolderId column
value with the Id of the folder. Similarly, all the subfolders of a folder can be retrieved by
matching ParentFolderId column value with the Id of the folder.

Creating a Data Access Class
We need to frequently get the data in and out of the database tables and hence we will
create a data access class. To code the data access class, create a new web site with
C# as the language. The Figure 4 shows the “New Web Site” dialog of Visual Studio.

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Figure 4: Creating a new Web Site

Then right click on the web site and choose “Add ASP.NET Folder” from the shortcut
menu. Further select App_Code to add App_Code folder to your web site. All our
classes will reside in this folder. Now add a new class called SqlHelper to the
App_Code folder. The SqlHelper will have in all four methods as shown in Figure 6.

Method Description

ExecuteNonQuery(string) This method accepts the name of the stored
procedure to execute and returns the
number of records affected by the query.

ExecuteNonQuery(string,SqlParameter[]) This method accepts the name of the stored
procedure to execute and array of
SqlParameter objects. It returns the number
of records affected by the query.

ExecuteDataSet(string) This method accepts the name of the stored
procedure to execute and returns the results
as a DataSet

ExecuteDataSet(string,SqlParameter[]) This method accepts the name of the stored
procedure to execute and array of
SqlParameter objects. It returns a DataSet
filled with the results of the query.

Figure 6: Methods of SqlHelper class

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

The Figure 7 shows the complete code of the SqlHelper class.

namespace Briefcase

{

public static class SqlHelper

{

 private static string strConn;

 static SqlHelper()

 {

 strConn = ConfigurationManager.ConnectionStrings

 ["connectionstring"].ConnectionString;

 }

 public static int ExecuteNonQuery(string sql)

 {

 return ExecuteNonQuery(sql, null);

 }

 public static int ExecuteNonQuery

 (string sql, SqlParameter[] p)

 {

 SqlConnection cnn = new SqlConnection(strConn);

 cnn.Open();

 SqlCommand cmd = new SqlCommand(sql,cnn);

 cmd.CommandType = CommandType.StoredProcedure;

 if (p != null)

 {

 for (int i = 0; i < p.Length; i++)

 {

 cmd.Parameters.Add(p[i]);

 }

 }

 int retval = cmd.ExecuteNonQuery();

 cnn.Close();

 return retval;

 }

 public static DataSet ExecuteDataSet(string sql)

 {

 return ExecuteDataSet(sql, null);

 }

 public static DataSet ExecuteDataSet

 (string sql, SqlParameter[] p)

 {

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

 SqlConnection cnn = new SqlConnection(strConn);

 cnn.Open();

 SqlCommand cmd = new SqlCommand(sql, cnn);

 cmd.CommandType = CommandType.StoredProcedure;

 if (p != null)

 {

 for (int i = 0; i < p.Length; i++)

 {

 cmd.Parameters.Add(p[i]);

 }

 }

 SqlDataAdapter da = new SqlDataAdapter();

 da.SelectCommand = cmd;

 DataSet ds = new DataSet();

 da.Fill(ds);

 cnn.Close();

 return ds;

 }

 }

}

Figure 7: The SqlHelper class

As you can see from Figure 7, the SqlHelper class picks up the database connection
string stored in web.config file and stores it in a static variable. Other static methods
such as ExecuteNonQuery() and ExecuteDataSet() use this variable. The Figure 8
shows the <connectionStrings> section of web.config that stores the database
connection string.

<connectionStrings>

<add name="connectionstring"

connectionString="Data Source=.;initial catalog=briefcasedb;

user id=some_user;password=some_password"

providerName="System.Data.SqlClient"/>

</connectionStrings>

Figure 8: Storing database connection string in web.config file.

We will not discuss the code of SqlHelper in more details as it is fairly simple. However,
just notice that the CommandType property of the SqlCommand class is set to
CommandType.StoredProecedure since all our data access is happening via stored
procedures.

Managing Folders
Now that we have created SqlHelper class let’s move further and create a class for
managing Folders. We need to perform the following operations on the folders:

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

 Create folders

 Rename folders

 Delete folders

 Retrieve all the subfolders of a folder

To accomplish these tasks we create a class named Folders and add four static
methods to it as shown in Figure 9.

Method Name Description

Create This method accepts folder name, parent id (if any) and time stamp
and adds a new folder entry in the Folders table

Rename This method accepts Id of the folder to be renamed and its new
name and changes the old name to the new one in the Folders
table

Delete This method accepts Id of the folder to be deleted and deletes its
entry from the Folders table

DeleteSubFolders This method accepts the Id of a folder and deletes all its sub folders

GetSubFolders This method accepts Id of a folder and returns all its subfolders

Figure 9: Methods of Folders class

Each of the method of Folders class is discussed next.

Create a new folder

A new folder is created by calling Create() method of the Folders class. The Figure 10
shows the Create() method.

public static int Create

(string FolderName,int ParentFolderId,DateTime DateCreated)

{

 SqlParameter[] p=new SqlParameter[3];

 p[0]=new SqlParameter("@FolderName",FolderName);

 p[1]=new SqlParameter("@ParentFolderId",ParentFolderId);

 p[2]=new SqlParameter("@DateCreated",DateCreated);

 return SqlHelper.ExecuteNonQuery("Folders_Create",p);

}

Figure 10: Creating folders

The Create() method accepts folder name, Id of its parent folder and time stamp. If the
new folder is supposed to be at top level then parent Id must be passed as 0. It then
invokes the ExecuteNonQuery() method of SqlHelper class. Note that the code is calling
Folders_Create stored procedure that we created earlier. The Folders table is having a
UNIQUE constraint that ensures that folder names are unique under a given scope. The
Create() method will throw an exception if the folder name is duplicate in a given
context.

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Renaming a folder

In order to rename a folder we use Rename() method of Folders class. The Figure 11
shows the code of Rename() method.

public static int Rename(int Id, string foldername)

{

 SqlParameter[] p = new SqlParameter[2];

 p[0] = new SqlParameter("@id", Id);

 p[1] = new SqlParameter("@foldername", foldername);

 return SqlHelper.ExecuteNonQuery("Folders_Rename", p);

}

Figure 11: Renaming a folder

The Rename() method accepts the Id of a folder that is to be renamed and the new
name of the folder. Inside it calls Folders_Rename stored procedure via
ExecuteNonQuery() method of the SqlHelper class. Just like Create() method,
Rename() method also will throw an exception if there is already a folder with the same
name.

Deleting folders

There are two possibilities as far folder deletion is concerned. Firstly we may delete a
folder that is not having any subfolder. Secondly, the folder being deleted may contain
subfolders. The Delete() and DeleteSubFolders() methods perform the respective
operations. The code of both of these methods is shown in Figure 12.

public static int Delete(int Id)

{

 SqlParameter[] p=new SqlParameter[1];

 p[0]=new SqlParameter("@Id",Id);

 return SqlHelper.ExecuteNonQuery("Folders_Delete",p);

}

public static int DeleteSubFolders(int ParentFolderId)

{

 SqlParameter[] p = new SqlParameter[1];

 p[0] = new SqlParameter("@Id", ParentFolderId);

 return SqlHelper.ExecuteNonQuery

("Folders_DeleteSubFolders", p);

}

Figure 12: Deleting a folder

The Delete() method accepts the folder Id to be deleted. It then calls
ExecuteNonQuery() method of SqlHelper and executes Folders_Delete stored
procedure.

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

The DeleteSubFolders() method accepts the Id of a folder whose subfolders are to be
deleted. It then executes the Folders_DeleteSubFolders stored procedure by calling
ExecuteNonQuery() method of SqlHelper class.

Retrieving a list of subfolders

We need to display subfolders of a folder on the web based user interface that we will
build later. Hence, we need a method that will return a list of all the subfolders belonging
to a specific folder. The GetSubFolders() method does just that and is shown in Figure
13.

public static DataTable GetSubFolders(int Id)

{

 SqlParameter[] p = new SqlParameter[1];

 p[0] = new SqlParameter("@ParentId", Id);

 DataSet ds =

 SqlHelper.ExecuteDataSet("Folders_GetSubFolders", p);

 return ds.Tables[0];

}

Figure 13: Retrieving a list of subfolders

The GetSubFolders() method accepts the Id of a folder whose subfolders are to be
retrieved and returns a DataTable containing the subfolder information. If the Id
parameter is passed as 0 that indicates that all the subfolders at the topmost level are to
be retrieved. Internally the GetSubFolders() method executes the
Folders_GetSubFolders stored procedure by calling ExecuteDataSet() method of
SqlHelper class. The 0th DataTable from the returned DataSet is then returned to the
caller.

Managing Files
The way we created a class for managing folders we also create a class called Files for
managing files. The File class should allow us to do the following operations:

 Add a new file to a folder

 Delete a single file

 Delete all the files from a specified folder

 Rename a file

 Get all the files belonging to a specific folder

In order to accomplish above tasks we create some static methods to the Files class.
These methods are listed in Figure 14.

Method Name Description

Create The Create() method creates a new file in the Files table.

Delete The Delete() method deletes a single file with the specified Id

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

DeleteFromFolder The DeleteFromFolder() method deletes all the files from a
specific folder

Rename The Rename() method renames a file

GetFilesFromFolder The GetFilesFromFolder() method returns a list of all the files
from a given folder

GetFile() The GetFile() method returns information and data about a single
file

 Figure 14: Methods of Files class

Each of the methods listed in Figure 14 are discussed next.

Creating a file

The Create() method of Files class creates a new file under a specified folder. The
Create() method is shown in Figure 15.

public static int Create(string FileName,byte[] FileData,int

FileSize,int FolderId,DateTime DateCreated)

{

SqlParameter[] p=new SqlParameter[5];

p[0]=new SqlParameter("@FileName",FileName);

p[1]=new SqlParameter("@FileData",FileData);

p[2]=new SqlParameter("@FileSize",FileSize);

p[3]=new SqlParameter("@FolderId",FolderId);

p[4]=new SqlParameter("@DateCreated",DateCreated);

return SqlHelper.ExecuteNonQuery("Files_Create",p);

}

Figure 15: Creating a new file

The Create() method accepts file name, contents of the file, size of the file in bytes,
folder Id in which the file is to be created and time stamp. Notice that contents of the file
are supplied as byte array. The code then executes the Files_Create stored procedure
by calling ExecuteNonQuery() method of SqlHelper class. Recollect that the UNIQUE
constraints of Files table ensure that duplicate file names are not stored under a folder.

Renaming a file

The Rename() method renames an existing file and is shown in Figure 16.
public static int Rename(int Id,string filename)

{

 SqlParameter[] p = new SqlParameter[2];

 p[0] = new SqlParameter("@id", Id);

 p[1] = new SqlParameter("@filename", filename);

 return SqlHelper.ExecuteNonQuery("Files_Rename", p);

}

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

Figure 16: Renaming a file

The Rename() method accepts the Id of a file that is to be renamed and the new file
name. It then executes Files_Rename stored procedure by calling ExecuteNonQuery()
method of SqlHelper class.

Deleting files

There are two possibilities as far as file deletion is concerned. We may delete a single
file or we may delete the folder. In the former case we need to delete just a single file
and Delete() method does that job. In the later case we need to delete all the files from
a specified folder. The DeleteFromFolder() method does that task. Both of these
methods are displayed in Figure 17.

public static int Delete(int Id)

{

 SqlParameter[] p=new SqlParameter[1];

 p[0]=new SqlParameter("@Id",Id);

 return SqlHelper.ExecuteNonQuery("Files_Delete",p);

}

public static int DeleteFromFolder(int folderid)

{

 SqlParameter[] p = new SqlParameter[1];

 p[0] = new SqlParameter("@folderid", folderid);

 return SqlHelper.ExecuteNonQuery("Files_DeleteFromFolder", p);

}

Figure 17: Deleting files

The Delete() method accepts the Id of a file that is to be deleted. It then executes
Files_Delete stored procedure by calling ExecuteNonQuery() method of SqlHelper
class.

The DeleteFromFolder() method accepts the folder Id from which the files are to be
deleted. It then executes the Files_DeleteFromFolder stored procedure by calling
ExecuteNonQuery() method of SqlHelper class.

Retrieving files

We need to retrieve files for two purposes. Firstly when we wish to download a file we
need to get its contents from the Files table. Secondly, when we navigate to a folder we
need to display all the files from that folder. The GetFile() and GetFilesFromFolder()
methods accomplish these tasks. These methods are listed in Figure 18.

public static DataTable GetFile(int Id)

{

 SqlParameter[] p = new SqlParameter[1];

Copyright © BinaryIntellect Consulting. All rights reserved.
www.binaryintellect.net

 p[0] = new SqlParameter("@Id", Id);

 DataSet ds = SqlHelper.ExecuteDataSet("Files_GetFile", p);

 return ds.Tables[0];

}

public static DataTable GetFilesFromFolder(int FolderId)

{

 SqlParameter[] p = new SqlParameter[1];

 p[0] = new SqlParameter("@FolderId", FolderId);

 DataSet ds = SqlHelper.ExecuteDataSet("Files_GetFromFolder",

p);

 return ds.Tables[0];

}

Figure 18: Retrieving files

The GetFile() method accepts the Id of a file and returns a DataTable containing details
of that file. It retrieves record for that file from Files table by executing Files_GetFile
stored procedure.

The GetFilesFromFolder() method accepts the folder Id whose files are to be retrieved.
It then executes Files_GetFromFolder stored procedure by calling ExecuteDataSet()
method of SqlHelper class. The 0th DataTable from the returned DataSet is returned to
the caller.

Summary
Storing files directly in the file system may not be the best way in all the situations. In
this article we started developing a web based briefcase application that allows you to
create a database driven file system and store files therein. We created database tables
and stored procedures that get the data in and out of the tables. We also created three
classes namely SqlHelper, Files and Folders. The SqlHelper class is a generic data
access layer and encapsulates all the commonly used database operations. The Files
and Folders classes internally use SqlHelper and allow you to manage files and folders
respectively. In the next article of this two part series we will complete our briefcase by
developing a web based user interface.

